Name Period	Book Date Points available:
	Physics Worksheet – Newton's Second Law Problems
Show all	work. Use problem solving format.
1. If	a plane is flying at a constant speed, are there no forces acting on it? Explain.
2. If	only one force is acting on an object, can the acceleration be zero? Explain
	escribe a situation in which the velocity and acceleration of a car are in the opposite ections.
	
4. What force is required to accelerate a 60kg child on a sled at 1.25m/s ² ?	
<u>K</u> [//	z = na
okg F	= (D(1.25)

5. How much tension must a rope be able to withstand if it is used to accelerate a 960kg car along a frictionless surface at 1.20 m/s²?

What is the average force required to accelerate a 7 gram bullet from rest to 125 m/s over a distance of 0.8m in the barrel of a rifle?

8. A baseball catcher catches a 0.14kg baseball that is traveling 35m/s. The glove moves backward 11.0cm.during the catch. What was the average force applied by the catcher?

$$V_{1}^{2} = V_{1}^{2} + Zad$$
 $V_{2}^{2} = V_{1}^{2} + Zad$
 $V_{3}^{2} = V_{1}^{2} + Zad$
 $V_{1}^{2} = V_{2}^{2} + Zad$
 $V_{2}^{2} = V_{2}^{2} + Zad$
 $V_{3}^{2} = V_{3}^{2} + Zad$
 $V_{4}^{2} = V_{2}^{2} + Zad$
 $V_{5}^{2} = V_{5}^{2} + Zad$
 $V_{7}^{2} = V_{5}^{2} + Zad$

9. A 12.0kg bucket is lowered vertically by a rope that has a tension of 163-N. What is the

10. The cable in a 2125kg elevator has a maximum strength of 21,750-N. What is the maximum upward acceleration it can give the elevator without breaking?

$$\frac{k}{m=2125k9}$$
 $\frac{1}{a_{max}}$ $\frac{1}{f_{T}}$ $\frac{1}{f_{T$

Worksheet - Second Law Problems 1.doc